Deciding Positivity of Littlewood-Richardson Coefficients

نویسندگان

  • Peter Bürgisser
  • Christian Ikenmeyer
چکیده

Starting with Knutson and Tao’s hive model [KT99], we characterize the Littlewood– Richardson coefficient c λ,μ of given partitions λ, μ, ν ∈ N as the number of capacity achieving hive flows on the honeycomb graph. Based on this, we design a polynomial time algorithm for deciding c λ,μ > 0. This algorithm is easy to state and takes O (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A max-flow algorithm for positivity of Littlewood-Richardson coefficients

Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group GL(n,C). They have a wide variety of interpretations in combinatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the positivity of Littlewood-Richardson coefficients in polynomial time...

متن کامل

Geometric Complexity III: on deciding positivity of Littlewood-Richardson coefficients

We point out that the remarkable Knutson and Tao Saturation Theorem [9] and polynomial time algorithms for linear programming [14] have together an important, immediate consequence in geometric complexity theory [15, 16]: The problem of deciding positivity of Littlewood-Richardson coefficients belongs to P ; cf.[10]. Specifically, for GLn(C), positivity of a Littlewood-Richardson coefficient cα...

متن کامل

Geometric complexity theory III: on deciding nonvanishing of a Littlewood–Richardson coefficient

We point out that the positivity of a Littlewood–Richardson coefficient c γ α,β for sln can be decided in strongly polynomial time. This means that the number of arithmetic operations is polynomial in n and independent of the bit lengths of the specifications of the partitions α,β, and γ , and each operation involves numbers whose bitlength is polynomial in n and the bit lengths α,β, and γ . Se...

متن کامل

From Littlewood-richardson Coefficients to Cluster Algebras in Three Lectures

This is an expanded version of the notes of my three lectures at a NATO Advanced Study Institute “Symmetric functions 2001: surveys of developments and perspectives” (Isaac Newton Institute for Mathematical Sciences, Cambridge, UK; June 25 – July 6, 2001). Lecture I presents a unified expression from [4] for generalized Littlewood-Richardson coefficients (= tensor product multiplicities) for an...

متن کامل

Small Littlewood-Richardson coefficients

We develop structural insights into the Littlewood-Richardson graph, whose number of vertices equals the Littlewood-Richardson coefficient cνλ,μ for given partitions λ, μ and ν. This graph was first introduced in [BI12], where its connectedness was proved. Our insights are useful for the design of algorithms for computing the Littlewood-Richardson coefficient: We design an algorithm for the exa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2013